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Abstract. A new anisotropic magnetic fluid is obtained using a colloidal suspension of magnetic particles of
nanometric size (ferrofluid) as a component of a swollen lyotropic hexagonal phase. This doped hexagonal
system exhibits specific behaviors when submitted to a magnetic field of weak intensity. The field-induced
instabilities are described and interpreted; they result from a high anisotropy of the magnetic susceptibility
of the medium, which is measured. It is finally shown that the magnetic properties of the doped hexagonal
phase allows one a determination of the compression modulus of the system.

PACS. 75.50.Mm Magnetic liquids – 82.70.Dd Colloids – 61.30.Gd Orientational order of liquid crystals;
electric and magnetic field effects on order

1 Introduction

Recently we have realized a hybrid colloidal assembly of
a new type [1], which combines a lyotropic hexagonal ma-
trix with a suspension of colloidal magnetic particles (fer-
rofluid). The magnetically doped system thus obtained
consists of a triangular array of liquid apolar cylinders
into which solid magnetic particles of nanometric size are
incorporated (Fig. 1). One of the distinctive features of
this system is that the combination of a high magnetic
susceptibility ferrofluid and a uniaxial hexagonal phase
results in a unidimensional magnetic liquid. The bidimen-
sional equivalent system, the ferrosmectic phase, which
consists of ferrofluid layers separated by the surfactant
membranes of a lamellar phase [2], has been extensively
studied. In regard of the results concerning its magnetic
properties [3,4], one can expect that magnetically doped
hexagonal phases should also give a specific response to
an external magnetic field.

In this paper, we explore the magnetic properties of
magnetically doped hexagonal samples. After a brief re-
call of the sample characteristics, we first describe and
interpret the magnetic instabilities that the doped sys-
tem develops when submitted to a magnetic field of weak
intensity. We next present a study of the anisotropy of
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Fig. 1. Sketch of the magnetically doped hexagonal phase.

magnetic susceptibility of the hexagonal phase. The exper-
imental results investigated as a function of the particle
concentration are quantitatively interpreted. In the last
part, we present a determination of one elastic constant
of the hexagonal phase directly derived from the magnetic
experiments and then discuss the results.

2 Samples

The samples are prepared in the hexagonal phase re-
gion of the phase-diagram of a pseudo-quaternary mixture
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(sodium dodecyl sulfate, pentanol, cyclohexane and brine,
[NaCl] = 0.4 M). The structure of the swollen hexag-
onal phases is fully described elsewhere [5] and consists

of oil cylinders of radius 150 Å, including the surfactant
tails, which are immersed in the aqueous medium and ar-
ranged in a triangular array with a lattice parameter d =
325 Å. The magnetically doped samples are obtained by
incorporating solid ferrimagnetic iron oxide (maghemite,
γ-Fe2O3) particles [6,7] inside the lyotropic cylinders, up
to a particle volume fraction Φ (relative to cyclohexane)
of 2%. A complete characterization of the doped system
by X-ray scattering has shown the existence of a depletion
layer for the particles near the inner walls of the cylinders,
the particles are thus quasi-unidimensionally confined in
the center of the tubes [1]. Moreover, the existence of this
depletion layer seems to prevent any direct mechanical
coupling between the nanoparticles and the lyotropic ma-
trix.

Let us briefly describe the characteristics of the sus-
pension of magnetic particles (ferrofluid). The particles,
dispersed in cyclohexane, are stabilized against Van der
Waals attractions by a surfactant coating; their size dis-
tribution is log-normal with mean radius r0 = 35 Å –
the radius refers here to the solid core – and a standard
deviation σ = 0.35, as determined by small-angle X-ray
scattering (SAXS). The geometric radius of the particles,

including the surfactant layer, is about 51 Å. The parti-
cles are small enough to be magnetic monodomains and
thus bear a permanent moment m0 = Msv, where v is
the volume of the particle and Ms is the maghemite bulk
magnetization (Ms = 3.75×105 A m−1). In zero magnetic
field, the colloidal suspension exhibits no magnetization
because of Brownian motion. When an external field is
applied, the particles moments align parallel to the field,
leading to a magnetizationM that obeys the Langevin law
for paramagnetism: the ferrofluid is said to be superpara-
magnetic [8]. The superparamagnetic susceptibility χ0 is
given by the initial slope of the M(H) curve [9]:

χ0 =
4πµ0M

2
s

9kT
r3
0 exp(13.5 σ2)Φ0 = α0Φ0. (1)

The susceptibility is proportional to the volume fraction in
particles, Φ0. From the X-ray scattering determination of
the size distribution of the particles, one gets: α0 = 13.4.
This value might be slightly over-evaluated since the X-
ray experiments give a measure of the iron core of the
particle, including the non-magnetic shell at the surface.

3 Effect of a magnetic field

3.1 Experiments

The samples are held in glass capillaries of rectangular sec-
tion 1× 0.1 mm2 and the cylinders are oriented along the
long axis of the capillary (z) with the following process:
the hexagonal phase is first cooled down to an isotropic
state (∼ 8 ◦C) and then slowly heated up to room temper-
ature under a homogeneous and constant magnetic field
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Fig. 2. (a) “planar” and (b) “normal” configurations for the
study of the reorientation under a magnetic field. The double
arrow indicates the initial direction of the cylinders.

(H ∼ 10 kOe), along which the cylinders align. However
the perfectly oriented sample is very fragile, and most of
the time the sample exhibits a striated texture commonly
encountered with lyotropic hexagonal phases [5,10–12],
which corresponds to collective undulations of the columns
around their mean direction, in (y, z) planes parallel to the
main sides of the capillary.

Two different geometric configurations are explored
with respect to the orientation of the magnetic field
(Fig. 2): in both cases, a field is applied perpendicularly
to the axis of the cylinders but it is either normal (along
x), “normal geometry”, or parallel (along y), “planar ge-
ometry”, to the anchoring walls of the cell. The magnetic
fields of fixed intensity, as measured with a Hall effect
probe, are produced by small permanent magnets, in the
gap of which the capillary is positioned. The samples are
observed by polarized light microscopy, the analyzer and
polarizer lying in the (y, z) plane. The kinetics is very slow
for fields of weak intensity: the time scales to consider are
between a few hours and a few weeks, for the range of
intensities explored (up to about 1 kOe). In the follow-
ing, we describe the effects occurring in the two geometric
configurations.

3.1.1 Normal geometry

Above a threshold field, one observes a reorientation of
the cylinders along the magnetic field. Because of the
very slow kinetics, the determination of a threshold field
is delicate. We arbitrarily set the maximum duration for
the observation to two weeks. With this convention, for
samples with Φ = 0.5%, one gets for the threshold field:
300 < Hn

c < 400 Oe. The large uncertainty is related to
the experimental protocol defined above.

When a sample is submitted to a field higher than
the critical one, the reorientation occurs through the ap-
pearance of a homogeneous striated texture (Fig. 3); the
stripes are parallel to the initial z direction of the cylin-
ders. It is important to underline that the nature of the
stripes is different from the striated textures that can be
initially present. Indeed, the field related striped texture
disappears when either the polarizer or the analyzer is
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Fig. 3. Striation pattern developed in the normal geometry
(magnetic field perpendicular to the plane of observation).
Bar = 100 µm.

parallel to the initial direction (z) of the cylinders, which
indicates that the distortion of the optical axis occurs in
the plane defined by their initial direction (z) and the
direction of the field (x). On the contrary, the striations
which form spontaneously correspond to distortions in the
plane (y, z). The periodicity of the pattern (of the order
of 10 µm) increases with time, whilst it becomes less and
less birefringent and regular. Finally the sample appears
completely dark between crossed polarizers whatever their
orientation, indicating a homeotropic orientation. The ini-
tial texture is recovered when the field is removed, which
is the signature of a strong anchoring at the walls.

3.1.2 Planar geometry

The overall effect is, in this geometry also, a reorientation
of the cylinders along the magnetic field above a threshold
value, but the observed stages of the process of reorienta-
tion appear more complex than in the normal geometry.
First, the determination of a threshold field is more del-
icate, because the nature of the field induced striations
is equivalent to the possible spontaneous striations. One
can nevertheless determine a magnetic field below that no
evolution of this striated pattern is observed. For exam-
ple, one finds 70 < Hp

c < 95 Oe, for Φ equal to 0.5%. Let
us remark that this field is about four times smaller than
the threshold field determined in the case of the normal
geometry.

For fields higher than Hp
c but lower than about 400 Oe,

a striped texture is maintained during the whole sequence,
whose periodicity increases with time, and this texture
becomes less well-defined and regular, as cylinders reori-
ent along the magnetic field. On the contrary, for higher
fields (> 400 Oe), the striped texture degenerates into a
striking well-defined herring-bone pattern (Fig. 4), whose
periodicity also increases with time. The herring-bone cor-
responds to periodically localized distortions of the optical
axis within a stripe, such that in the distorted zone, the
angle between the optical axis and the magnetic field is
smaller. This texture recalls the twisted texture that oc-
curs with cholesteric polymer liquid crystal [11,13] when
the concentration in polymer increases so as to relax me-
chanical constraints. In our case, it is very likely that mag-
netic constraints are relaxed in that way.

Fig. 4. Herring-bone pattern developed in the planar geometry
(the arrow indicates the direction of the magnetic field). Bar =
100 µm.

In both cases, the final state corresponds to cylinders
parallel to the field. When the magnetic field is removed
at early stages (i.e. when the deformations are small), the
initial texture is recovered, whereas it is not at later stages.

3.2 Interpretation

The first important observation to stress is that, what-
ever the geometry (planar or normal), the transition from
the initial state where the cylinders lie perpendicular to
the magnetic field to the final state, with cylinders paral-
lel to the field, is homogeneous. This is opposite to that
observed with lamellar phases doped with magnetic parti-
cles. For these bidimensional systems, the application of a
magnetic field perpendicular to the layers has indeed been
found to induce a reorientation of these layers via a het-
erogeneous occurrence of toroidal defects [4]. On the con-
trary, in the present experiments, the homogeneous stri-
ated texture recalls the well-known Helfrich-Hurault in-
stabilities for cholesteric and smectic phases [14,15], and
experiments will be interpreted with this comparison in
mind.

First of all, the rotation of the structure in the
field suggests that doped hexagonal phases possess an
anisotropic magnetic susceptibility. Indeed, the ferrofluid
suspension is an isotropic superparamagnetic medium de-
scribed by a scalar susceptibility χ0, but once the suspen-
sion is incorporated inside a hexagonal lyotropic struc-
ture, because of the axial symmetry, the susceptibility is
expected to be a tensor with two components:

χ̃ =

χ⊥ 0 0
0 χ⊥ 0
0 0 χ‖


where χ⊥ and χ‖ are respectively the magnetic suscep-
tibilities in a plane orthogonal to the optical axis of the
medium and parallel to the optical axis. The difference
between the two components, χa = χ‖ − χ⊥, is called
the anisotropy of magnetic susceptibility of the medium.
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The density of magnetic energy of a hexagonal phase sub-
mitted to a magnetic field H can be written as Fmagn. =

(1/2)µ0χa |H ∧ t|2 where t is the direction of the axis of
the cylinders. Experiments clearly indicate that χa is pos-
itive, so that an orientation of the cylinders parallel to
the applied field is energetically more favorable than a
perpendicular one.

In the following, we focus on the normal geome-
try: indeed, the strength of the anchoring in the planar
configuration being more questionable, a quantitative in-
terpretation of the threshold field would be delicate.
In the normal geometry, one can use the analogy with
the Helfrich-Hurault instabilities for smectic phases [16],
which correspond to undulations of the optical axis in
planes defined by the initial direction of the optical axis
and the direction of the field above a threshold field. The
threshold field results from a competition between the
magnetic energy and the elastic deformation energy. For
modes polarized in the (x, z) planes, smectic and hexag-
onal systems behave identically [16]. Thus, a straightfor-
ward extrapolation of the smectic results predicts the ex-
pression for the threshold field:

Hn
c =

2π
√
K3

(
B̄ + C

)
µ0χah

1/2

· (2)

The B̄, C and K3 constants are defined in the expression
of the density of free energy F for an elastic deformation
of a hexagonal phase [16,17]:

F =
1

2
B̄ (∇⊥ · u)

2
+

1

2
C
[
(∇x · uy +∇y · ux)

2

+ (∇x · ux −∇y · uy)2
]

+
1

2
K3

(
∇2
‖u
)2

(3)

K3 is the column bending elasticity, B̄ is the elastic con-
stant corresponding to homogeneous compression of the
triangular lattice of columns, C is a constant for a shear
deformation of the lattice; B̄ + C is an uniaxial compres-
sion modulus.

The expression (2) for the threshold field shows that
quantitative information of the elasticity of the doped sys-
tem could be gained from the threshold field measurement
if the anisotropy of magnetic susceptibility is known. This
has been one of the motivations for carrying out an ex-
perimental study of this parameter, which is presented in
the next part.

4 Study of the anisotropic magnetic
susceptibility
4.1 Experiments

The samples are held in small cylindrical cells of inner
diameter 0.95 mm and length of the order of 5 mm. A
SQUID magnetometer (Quantum Design Inc.) equipped
with a superconducting magnet is used to measure the
sample magnetization for discrete values of the field. Be-
cause of the reduced available space inside the magne-
tometer, the cell that contains the sample can only be
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Fig. 5. Variation of the parallel and perpendicular susceptibil-
ities with the volume fraction of particles. The lines correspond
to fits with second order polynomials: χ‖ = 11.3Φ0 + 228Φ2

0

and χ⊥ = 11.3Φ0 − 178Φ2
0.

positioned with its main axis (z) parallel to the field. This
implies that, in order to measure the magnetization curve
with both the field parallel and perpendicular to the cylin-
ders, one has to produce two orientations of the cylinders
with respect to the cell. The procedure we adopted is the
following: prior to the magnetic measurement, we align
the cylinders perpendicular to the z axis of the cell with a
high magnetic field (∼ 8× 104 Oe); this geometry allows
the measurement of the perpendicular magnetizationM⊥.
From the initial slope of the M⊥(H) curve, one has thus
access to the perpendicular susceptibility χ⊥. We then ap-
ply in situ a high magnetic field that reorients the cylin-
ders parallel to the long axis of the cell; the field is applied
sufficiently long to ensure a complete reorientation. This
allows the measurement in a second step of the parallel
magnetization M‖. The initial slope of the M‖(H) curve
gives thus access to the parallel susceptibility χ‖; this slope
is always larger than initial slope for the M⊥(H) curve:
the system exhibits thus a positive anisotropy of suscep-
tibility χa = χ‖ − χ⊥ > 0. We have checked that there is
no relaxation towards the most favorable parallel orienta-
tion (for which the cylinders are parallel to the anchoring
walls) on the time scale of the χ⊥ measurements (about
20 min).

We vary the particle volume fraction Φ relative to cy-
clohexane from 0.15 to 2%, which corresponds to volume
fraction Φ0 relative to the whole volume in the range 0.10–
1.34% and investigate the behavior of both the perpen-
dicular and parallel susceptibilities with Φ0. Notice that,
because of the large aspect ratio of the cell, the effect
of the demagnetizing field due to the shape anisotropy
of the cell is here negligible [18] and the intrinsic sus-
ceptibilities are equal to the measured ones. The varia-
tions of both the parallel χ‖ and perpendicular χ⊥ are
reported in Figure 5. The uncertainties arise essentially
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Fig. 6. Variation of the anisotropy of susceptibility with
the volume fraction in particles. The line corresponds to a
quadratic function: χa = 406Φ2
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from the experimental determination of the volume of the
samples. The anisotropy of magnetic, χa, are reported in
Figure 6. The values are in the range 4× 10−4–7× 10−2.
The data clearly shows a quadratic dependence of χa with
Φ0; the best fit gives: χa = 406Φ2

0. Concerning the parallel
and perpendicular susceptibilities, their variations appear
essentially linear with Φ0, indicating that the quadratic
parts are small compared to the linear ones. Fits with sec-
ond order polynomials give: χ‖ = 11.3Φ0 + 228Φ2

0 and

χ⊥ = 11.3Φ0 − 178Φ2
0.

4.2 Interpretation

One can a priori analyze the anisotropy of magnetic
susceptibility at different spatial scales. First, one can
treat the system as a periodic arrangement of continu-
ous paramagnetic tubes whose intrinsic susceptibility is
χ0, the susceptibility of the tridimensional ferrofluid, sep-
arated by a non-magnetic medium [19]. But, as the ra-
dius of the ferrofluidic cylinders is comparable to the
size of the particles, so that each magnetic cylinder is
quasi-unidimensional, this first approach is questionable.
It seems thus more reasonable to use a mean-field type
model and consider an assembly of magnetic particles dis-
tributed in lines: each particle is submitted to an exter-
nal field, plus the dipolar field created by its neighbors,
which is different whether the external field is parallel or
perpendicular to the lines. The doped hexagonal phase
is modeled as a bidimensional lattice of these lines. The
number of particles per unit length is Nl, and each parti-
cle bears an effective moment m along the field. We note
a, the total radius for the particles, that includes the sur-
factant length (2a = 102 Å corresponds to the distance
at contact). In a first stage, we calculate the dipolar fields
created at the center of a line by the magnetic moments

of this line. Following Widom [20] and Ponsinet [3], the
dipolar field Hi

d, i = (‖,⊥), is:

H
‖
d =

∫
|r|>a

Nlm

4πr3

[
3
(m

m

r

r

) r

r
−

m

m

]
dr =

Nlm

2πa2
(4)

when the external field is parallel to the cylinders, and

H⊥d =
Nlm

4πa2
(5)

when the external field is perpendicular to the cylinders.
With a calculation analogous to the calculation for

Lorentz local fields in a polarizable medium [21], it is
shown [22] that the dipolar fields, parallel and perpen-
dicular, created in the center of a tube by the corona of
neighboring tubes are equal to zero. Thus, the relations (4,
5) given above are available for the hexagonally packed ar-
rangement of columns. The magnetization is

M =
Nlm

πR2
ρc =

2Nlm√
3d2

,

where ρc is the fraction of surface occupied by the cylin-
ders of radius R in a plane orthogonal to their long axis.
From Mi = χ0

(
Hext +Hi

d

)
= χiHext, we then find to the

second order in Φ0:

χ‖ =
χ0

1− χ0

√
3d2

4πa2

≈ α0Φ0

(
1 +

α0Φ0

√
3d2

4πa2

)
(6)

χ⊥ =
χ0

1 + χ0

√
3d2

8πa2

≈ α0Φ0

(
1−

α0Φ0

√
3d2

8πa2

)
(7)

and

χa ≈
3
√

3d2

8πa2
α2

0Φ
2
0. (8)

In these expressions, the quadratic dependence of χa on Φ0

is consistent with experimental results. Coming to a more
quantitative comparison with the experimental data, the
model predicts that the ratio (χ‖−α0Φ0)/(α0Φ0−χ⊥) is
equal to 2, compared to the value of 1.3 extracted from the
fits. On the other hand, from the fit of the parallel and per-
pendicular susceptibilities, one gets α0 = 11.6, compared
to 13.4 for a theoretical value derived from the size dis-
tribution. A reasonably good agreement is thus obtained.
Moreover, the model, which relates directly the anisotropy
of susceptibility to the geometric parameters (d and a)
of the system, predicts χa = 956Φ2

0 (to be compared to
the fit of the experimental data: χa = 406Φ2

0). Though of
the same order of magnitude, the experimental anisotropy
appears twice as low as the prediction. This discrepancy
could be attributed to the fact that the model assumes
a perfectly unidimensional arrangement for the particles:
X-ray scattering results [1] show indeed that the particles
are depleted from the inner wall of the tubes, but are not
perfectly aligned.
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5 Determination of elastic constants

We have shown that lyotropic hexagonal phases with
magnetic particles trapped inside cylinders display in-
stabilities when submitted to a magnetic field of weak
intensity. It is possible through these instabilities to ob-
tain information on the elastic constants of the hexago-
nal phase. Indeed, the combination of the measurement
of the magnetic anisotropy of susceptibility and of the
determination of a threshold field (2) enables us to eval-
uate the product K3

(
B̄ + C

)
. One gets: K3

(
B̄ + C

)
=

(6.0±3.1)×10−9 N2m−2. Moreover, the bending constant
K3 can be estimated through microscopic considerations
(though not for doped systems) [5,23]:

K3 ≈
2π
√

3

κR

d2
,

where R is the radius of the cylinders (here R = 150 Å),

d is the lattice parameter (here d = 325 Å) and κ, is the
bending rigidity of the surfactant monolayer. Taking for
κ the order of magnitude of the thermal energy kT [24],
one gets K3 = 2× 10−13 N and thus for the uniaxial com-
pression modulus: B̄ + C = (3.0 ± 1.5) × 104 Pa. The
elasticity of the doped hexagonal phases is fully discussed
elsewhere [25]. Let us simply remark here that this com-
pression modulus appears several orders of magnitude
smaller than the compression modulus for a thermotropic
hexagonal liquid crystal or for a non-swollen lyotropic
hexagonal phase (B̄ + C ∼ 107 Pa) [26], but two or-
ders of magnitude larger than the compression modulus
for a lamellar phase of very closed composition (B̄ +C ∼
102 Pa) [27].

6 Conclusion

Lyotropic hexagonal phases with magnetic particles in-
serted inside their cylinders actually achieve unidimen-
sional magnetic fluids. As such, they possess an anisotropy
of magnetic susceptibility, whose experimental study is re-
ported here. Both the parallel and perpendicular suscep-
tibilities of the phase are high, as expected from a super-
paramagnetic medium, and their difference is large as well,
showing that the system is indeed strongly anisotropic.
The variation of the anisotropy of magnetic susceptibility
with the volume fraction of particles can be quantitatively
interpreted in the framework of mean-field-type processes,
involving the anisotropy of the dipolar magnetic field cou-
pled to the strong anisotropy of spatial distribution for
the particles. Because of this high anisotropy of suscepti-
bility, magnetically doped hexagonal samples present very
specific features. In particular, instabilities occur for very
weak magnetic field, much weaker than for analogous sys-
tems such as thermotropic hexagonal phases, whose dia-
magnetic susceptibilities and relative anisotropy, are sev-
eral orders of magnitude smaller.

Finally, let us mention that one can take advantage
of the rather easy way of orienting hexagonal phases (by
annealing under a magnetic field of weak intensity) com-
pared to usual lyotropic phases, to obtain perfectly aligned

samples. These latter are suitable for other experiments,
as for instance dynamic light scattering [28].

We would like to thank Ian Campbell for the generous disposal
of the SQUID magnetometer, Virginie Ponsinet and Madeleine
Veyssié for fruitful discussions and Phil N. Segré for a careful
reading of the manuscript
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